

Ist Floor, Skylark Building, Newal Kishore Road, Hazratganj, Lucknow. **Call : 7080111582, 7080111595**

Time : 1 : 15 Hr.

- 01. A bird is flying towards north with a velocity 40 km/h and a train is moving with velocity 40 km/h towards east. What is the velocity of the bird noted by a man in the train :
 - (1) $40\sqrt{2}$ km/h north-east
 - (2) $40\sqrt{2}$ km/h south-east
 - (3) $40\sqrt{2}$ km/h north-west
 - (4) $_{40\sqrt{2}}$ km/h south-west.
- 02. A lift is coming from ground floor and is just about to reach 4th floor. Taking ground floor as origin and take positive direction upwards for all quantities, which one of the following is correct?

03. An object moving with a speed of 25 m/s, is decelerated at a rate given by :

$$\frac{\mathrm{dv}}{\mathrm{dt}} = -2.5\sqrt{\mathrm{v}};$$

where v is instantaneous speed. The time taken by the object, to come to rest, would be : (1) 1 s (2) 2 s (3) 4 s (4) 8 s

04. A slab of material of dielectric constant K has the same area as the plates of a parallel plate capacitor but has a

thickness $\left(\frac{3}{4}\right)$ d, where d is the separation of the plates.

The ratio of the capacitance C (in the presence of the dielectric) to the capacitance C_0 (in the absence of the dielectric) is:

$$(1)\frac{3K}{K+4} \qquad (2)\frac{3}{4}K \quad (3)\frac{4K}{K+3} \quad (4)\frac{4}{3}K$$

05. In the given system a capacitor of plate area A is charged up to charge q. The mass of each plate is m_2 . The lower plate is rigidly fixed. Find the value of m_1 so that the system is in equilibrium

- 06. A parallel plate capacitor is charged by a battery after charging the capacitor, the battery is disconnected and if a dielectric plate is inserted between the plates, then which one of the following statements is not correct
 - (1) increase in the stored energy
 - (2) decrease in the potential difference
 - (3) decrease in the electric field
 - (4) increase in the capacitance
- 07. The plates of a parallel plate capacitor with air as medium are separated by a distance of 8 mm. A medium of dielectric constant 2 and thickness 4 mm having the same area is introduced between the plates. For the capacitance to remain the same, the distance between the plates is (1)8 mm (2)6 mm (3)4 mm (4)10 mm
- 08. The true statement is, on increasing the distance between the plates of a parallel plate condenser (assume battery is disconnected)

(1) The electric intensity between the plates will decrease(2) The electric intensity between the plates will increase(3) The electric intensity between the plates will remain unchanged

(4) The P.D. between the plates will decrease

09. Which of the following statements is correct regarding the gravitational force ?

(1) The gravitational force is dependent on the intervening medium

- (2) The gravitational force is a non-conservative force
- (3) The gravitational force forms action-reaction pair
- (4) The gravitational force is a non-central force

Question: 60

10. Four particles each of mass m are placed at the vertices of a square of side *l*. The potential at the centre of square is

(1)
$$-2\frac{\mathrm{Gm}}{l}$$
 (2) $-3\sqrt{2}\frac{\mathrm{Gm}}{l}$
(3) $-2\sqrt{2}\frac{\mathrm{Gm}}{l}$ (4) $-4\sqrt{2}\frac{\mathrm{Gm}}{l}$

11. The two capacitors C_1 and C_2 are charged to potentials V_1 and V_2 and then connected in parallel. There will be no flow of energy, if (1) $C_1V_1 = C_2V_2$ (2) $V_1 = V_2$

(3)
$$C_1 = C_2$$
 (4) $\frac{C_1}{V_1} = \frac{C_2}{V_2}$

- 12. A capacitor of 20 μ F charged upto 400 V is connected in parallel with another capacitor of 10 μ F, which is charged upto 100 V. The common potential is (1) 250 V (2) 300 V (3) 400 V (4) 600 V
- 13. Two capacitors of capacitance C_1 and C_2 are connected in parallel. If a charge Q is given to the combination, the charge gets shared. The ratio of the charge on the capacitor C_1 to the charge on the capacitor C_2 is (1) C_1C_2 (2) C_2/C_1 (3) C_1+C_2 (4) C_1/C_2
- 14. Two capacitors of 20 μ F and 40 μ F are connected to 40 V and 20 V sources, respectively. If they are connected in opposite polarity by the wire, then what is the common potential of the capacitors ? (1) 133 3 V (2) 150 V

(1)133.3 V	(2) 150 V
(3) 300 V	(4) 0 V

15. A steel wire hangs vertically under its own weight. If its density is 4000 kg/m^3 and breaking stress is $1000 \times 10^5 \text{ N/m}^2$, then maximum length of wire that will not break under its own weight is

(1) 1250 m (3) 2500 m (2) 500 m (4) 5000 m

16. Match List I with List II.

	List-I		List-II
	(Monomer Unit)		(Polymer)
(a)	Caprolactum	(i)	Natural rub ber
(b)	2-Chloro-1,3-	(ii)	Buna-N
	butadiene		
(c)	Isoperene	(iii)	Nylon 6
(d)	Acrylonitrile	(iv)	Neoprene

Choose the correct answer from the options given below: $(1)(a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (ii), (d) \rightarrow (i)$

 $\begin{array}{l} (2) (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (iv), (d) \rightarrow (iii) \\ (3) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (i), (d) \rightarrow (ii) \\ (4) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iii), (d) \rightarrow (iv) \end{array}$

- 17. The correct order of electron gain enthalpy is (1) S > Se > Te > O (2) Te > Se > S > O(3) O > S > Se > Te (4) S > O > Se > Te
- 18. Select the correct option for statements (I) and (II).(I) Molar mass of (NH₄)₃PO₄12MoO₃ (APM) = 1837g

$$P\% = \frac{31}{1837} \times \frac{W_{APM}}{W} \times 100\%$$
(II) Molar mass of Mg₂P₂O₇(PP) = 222 g

$$P\% = \frac{62}{222} \times \frac{w_{PP}}{w} \times 100\%$$
(1) Only (I) is correct
(2) Only (II) is correct
(3) Both are correct

- (4) Both are wrong
- 19. The absolute configuration of the compound Br

$$H_{3C}$$
 Cl (1) R (2) S (3) E (4) Z

20. Which one of the following orders presents the correct sequence of the increasing basic nature of the given oxides?

21. Which ring nitrated most readily (A or B) why?

22. Correct order of basic strength of given amine in aqueous medium

 $\begin{array}{l} C_2H_5NH_2, (C_2H_5)_2NH, (C_2H_5)_3N, C_6H_5NH_2 \\ (1) \ (C_2H_5)_2NH > C_2H_5NH_2 > C_2H_5)_3N > C_6H_5NH_2 \\ (2) \ (C_2H_5)_2NH > (C_2H_5)_3N > C_2H_5NH_2 > C_6H_5NH_2 \\ (3) \ (C_2H_5)_2NH > (C_2H_5)_3N > C_6H_5NH_2 > C_2H_5NH_2 \\ (4) \ (C_2H_5)_3N > (C_2H_5)_2NH > C_2H_5NH_2 > C_6H_5NH_2 \\ \end{array}$

23. In Dumas' method of estimation of nitrogen 0.35 g of an organic compound gave 55 mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be: (Aqueous tension at 300 K =15 mm)

(1) 14.45	(2) 15.45
(3) 16.45	(4) 17.45

2 Sample Paper-96 SKD NEW STANDARD COACHING INSTITUTE

🌐 www.neetlive.co.in 🛛 🐧 7080111582

24. 0.2595 g of an organic substance in a quantitative analysis yielded 0.35 g of the barium sulphate. The percentage of sulphur in the substance is

(1) 18.52 g	(2) 182.2 g
(3) 17.5 g	(4) 175.2 g

In which of the following alkenes will a hydrogen shift 25. occur upon addition of HCl?

- 26. A gaseous oxide contains 30.4% of nitrogen, one molecule of which contains one nitrogen atom. The density of the oxide relative to oxygen is (1)0.94(2)1.44(3) 1.50 (4)3.0
- 27. 5 moles of a gas in a closed vessel was heated from 300 K to 600 K. the pressure of the gas doubled. The number of moles of the gas will be (1)5(2)2.5
 - (3)10(4)20
- 28. For the reaction $A + 2B \rightarrow C$, 5 moles of A and 8 moles of B will produce (1) 5 moles of C (2) 4 moles of C (3) 8 moles of C (4) 13 moles of C
- 29. When an ideal binary solution is in equilibrium with its vapour, molar ratio of the two components in the solution
 - and in the vapour phases is (1) same
 - (2) different
 - (3) may or may not be same depending upon volatile nature of the two components (4) None of the above
- Which one of the following pairs of solution can we 30. expect to be isotonic at the same temperature? (1) 0.1 M urea and 0.1 M NaCl
 - (2) 0.1 M urea and 0.2 M MgCl₂
 - (3) 0.1 M NaCl and 0.1 M Na₂SO₄
 - (4) 0.1 M Ca(NO₃)₂ and 0.1 M Na₂SO₄

BOTANY

- 31. Asparagine and glutamine are two important amides which are formed from aspartic acid and glutamic acid, respectively, by replacing the ...a... by another ...b... radicle.
 - (1) a-hydroxyl part of acid ; b-NH₂⁻
 - (2) a-NH₂⁻ group of amino acid ; b-OH⁻
 - (3) a-amino group ; b-keto group
 - (4) a-keto group ; b-amino group

32. Recognise the figure and find out the correct matching.

(1) A—ATP synthase, B-photosystem I, C photosystem II, E-stroma, F-lumen, D-cytochrome b and f

(2) D—ATP synthase, A—photosystem I; B photosystem II, F-stroma, E-lumen, C-cytochrome b and f

(3) D—ATP synthase, B-photosystem I, A photosystem II, F-stroma, E-lumen, C-cytochrome b and f

(4) D-ATP synthase, A-photosystem I, Bphotosystem II, E-stroma, F-lumen, C-cytochrome b and f

- 33. On which basis nutrients are divided into macro and micronutrients?
 - (1) Quantitative requirement
 - (2) Qualitative requirement
 - (3) Both (1) and (2)
 - (4) None of these

34. Ribosomes take part in protein synthesis in

- (1) Viruses
- (2) Prokaryotes only
- (3) Both prokaryotes and eukaryotes
- (4) Eukaryotes only
- 35. F1 particles occur in
 - (1) Mitochondria
 - (2) Chloroplasts (3) Ribosomes
 - (4) Rough endoplasmic reticulum
- 36. Small particles projecting from inner surfaces of cristae and inner mitochondrial membrane are (1) Microsomes (2) Oxysomes (3) Myeloid bodies (4) Informosomes
- 37. Axoneme with 9+2 microtubular arrangement occurs in (1)Cilia (2) Flagella (3) Both (1) and (2) (4) Centriole
 - - Sample Paper-96

38.	Calculate amount of DN content of cell is 4 pg	NA in a cell aft at S phase.	er meiosis II, if DNA	48.	(Goitre can occur except :	as a co	onsequence of all the following	
	$(1) 4 pg \qquad (2) 2 pg$	(3) 1 pg	(4) 8 pg			(1) Iodine deficie	ncy		
30	Mark the correct match	h	•			(2) Pitultary aden	oma		
59.	(1) Stage_G, phase P	1. loidy_n·DN/	A content_2C			(3) Grave s used	st ska of a	voganous therewing	
	(2) Stage–S phase: Plo	$dv = 2n \cdot DNA$	-4C		(4) Excessive intake of exogenous thyroxine				
	 (2) Stage–S phase, Ploidy–2n, DNA content–4C (3) Stage–G₂ phase; Ploidy–4n; DNA content–4C (4) Stage–Prophase; Ploidy–2n; DNA content–2C 		49. Variations during mutations of meiotic recombinationare:						
					(1) random and directionless				
40.	If a cell has 2n number	of chromosor	ne in G_1 phase, what			(2) random and di	irection	al	
	is the number of chron	nosome in cel	l after S phase?			(3) random and sn	nall		
	(1)n $(2)4n$	(3)2n	(4) 8n		((4) random, small	and di	rectional	
41.	If one cell X has a w =	= – 2000 kPa.	and the other Y has						
	$\psi = -1000 \text{ k Pa, what}$	t is the direct	tion of movement of	50.]	First form of life c	could ha	ave come from pre-existing non-	
	water?]	living organic me	olecule	s like RNA and protein and the	
	(1) X to Y	(2) Y to X			İ	formation of life v	was pre	ceded by chemical evolution was	
	(3) X to Y and Y to X	(4) X to Y	or Y to X]	proposed by:			
						(1) Lamarck			
42.	Choose the correct op	tion. Mycorr	hizae is a symbiotic			(2) Oparin and Ha	aldane		
	association of fungus	with root syst	em which helps in :			(3) Darwin			
	(1) Absorption of water	r (11) Minera	al absorption			(4) Hugo de Vries	5		
	(III) Transfocation $(1) Only (i)$	(1V) Gaseo	as exchange	71					
	(3) Both (i) and (ii)	(4) Both (ii	i) and (iii)	51.		A and B are respo	ed on <u>F</u>	$\frac{A}{B}$ where analogy is result of <u>B</u> .	
		(1) Both (1	() und (m)			(1) Convergent e	volutio	n Divergent evolution	
43.	Isobilateral leaf found	in:				(2) Divergent evo	olution.	, convergent evolution	
	(1) Monocotyledonou	IS		-	((3) Natural selecti	ion, Ge	netic drift	
	(2) Dicotyledonous					(4) Adaptive radi	ation, o	convergent evolution	
	(3) Both monocotyled	lonous and d	icotyledonous	52					
	(4) None of these			52.	2	Stanley miller ob experiment :	served	the formation of during his	
44.	Casparian strips occur	in				(1) Nucleic acid (3) Amino acid		(2) Nucleotides (4) Polypeptide	
	(1) cortex	(2) pericyc	ele _					(I) I offeptide	
	(3) epidermis	(4) endode	ermis	53.	ノ	Which type of sel	ection	is industrial melanism observed	
15	Number of elements	nanded for 1	age the growth and		i	in moth, Biston bi	itularia	:	
45.	development of plants	is	icality growth and		((1) Stabilising		(2) Directional	
	(1) 17 (2) 24	(3)34	(4) 10			(3) Disruptive		(4) Artificial	
				54	1	Match column I	and or	hump II and salact the correct	
			2	54.		option from the c	codes g	iven below :	
	ZOOLOGY	$/ h^{\circ}$				-F			
						Column-I		Column-II	
16	Probability of four son	e to a couple	ie.		А.	Mutation	(i)	Changes in population's	
40.	i robability of rour som		15.					allele frequencies due to	
	$(1)\frac{1}{-}$	$(2)\frac{1}{2}$						chance alone	
	··· 4	(-/ 8			В.	Gene flow	(ii)	Differences in survival	
	1	1						and reproduction among	
	$(3) \frac{16}{16}$	$(4) \frac{1}{32}$				Noturo1	(;;;)	Immigration amigration	
					С.	selection		change allele frequencies	
47.	A normal woman whose	se father was c	colourblind marries a		D	Genetic drift	(iv)	Source of new alleles	
	colourblind man. Wha	t percentage	of girls born to these		<u></u> .		(17)		
	parents would be colo	urblind?		-		(1) A-(i), B-(ii), C	C–(iii), (D)-(iv)	
	(1) 50%	(2) 25%				(2) A-(iv), B-(ii),	C-(iii),	(D)-(i)	

 $\begin{array}{l} (1) A-(1), B-(11), C-(111), (D)-(1V) \\ (2) A-(iv), B-(ii), C-(iii), (D)-(i) \\ (3) A-(iii), B-(i), C-(iv), (D)-(ii) \\ (4) A-(iv), B-(iii), C-(ii), (D)-(i) \end{array}$

4 Sample Paper-96 SKD NEV

(4) 100%

(3)75%

SKD NEW STANDARD COACHING INSTITUTE

www.neetlive.co.in

7080111582

- 55. The process of evolution of different species in a given geographical area starting from a point and literally radiating to these areas of geography is called as:
 - (1) Divergent evolution
 - (2) Adaptive radiation
 - (3) Parallel adaptation
 - (4) Convergent radiation

56. How many of the following develops as a result of divergent evolution i.e., the same structure developed along different directions due to adaptation to different needs.

(1) Sweet potato and potato

- (2) Thorn of Bougainvillea and tendril of cucurbita
- (3) Flippers of penguin and dolphin
- (4) Vertibrates hearts or brains

(1) Two	(2) Three
(3) Four	(4) Five

- 57. Animals of which class are mostly terrestrial and their body is covered by dry and cornified skin, epidermal scales or scutes?
 (1) Amphibia (2) Reptilia
 - (3) Aves
- 58. Both male and female pigeons secrete milk through:
 (1) Mammary glands
 (2) Crop glands
 (3) Salivary glands
 (4) Gizzard glands
- 59. Which of the following is an oviparous mammal?
 (1) Balaenoptera
 (2) Ornithorhynchus
 (3) Pteropus
 (4) Delphinus
- 60. Ear pinna is found in: (1) Reptiles (3) Aves
- (2) Mammals(4) All vertebrates

200'

(4) Mammalia

TIN T